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Objective of the talk

Most of the quantum systems encountered in practice are governed by
PDEs

i
∂ψ

∂t
(x , t) = (−∆ + V (x))ψ(x , t) + u(t)W (x)ψ(x , t)

We will try to understand how the properties (controllability) of these
infinite dimensional systems can be deduced from the properties of their
finite dimensional approximations.

In what follows, we neglect decoherence.
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Bilinear control systems

Let A and B be two n × n skew hermitian matrices (A
T

= −A,
B

T
= −B), and fix x0 in Cn. For scalar valued u, we consider

(σ)

{
x ′(t) = (A + u(t)B)x(t)
x(0) = x0

Proposition

For every u : R→ R, for every x0 in Cn, the solution t 7→ X u
t x0 of (σ)

lies, for every time, in the Hilbert sphere of Cn containing x0.
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Lift in matrix groups
Sussmann, 70’s

This system in Cn

(σ)

{
x ′(t) = (A + u(t)B)x(t)
x(0) = x0

can be lift in U(n)

(Σ)

{
X ′(t) = (A + u(t)B)X (t)
X (0) = Idn

Proposition

For every u : R→ R, the solution X u
t of (Σ) lies, for every time t, in

U(n) = {M ∈Mn,n(C)|MT
M = Idn}.
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Notions of controllability

Definition
The control system σ is controllable on the unit sphere of Cn if for every
x0, x1, there exists u : [0,T ]→ R such that X u

T x0 = x1.

Definition

The control system Σ is controllable in U(n) if for every X1 in U(n),
there exists u : [0,T ]→ R such that X u

T = X1.

Thomas Chambrion Infinite dimensional quantum systems



Finite dimensional bilinear quantum systems
Infinite dimensional quantum systems

Finite dimensional viewpoint

Bilinear systems in compact groups
Controllability
Control in practice

Attainable set

A,B smooth vector fields on the manifold M

ẋ = A(x) + u(t)B(x), x ∈ M

Definition

Solution at time t with control u from x0: Υu
t (x0).

Attainable set at time t At(x0) = {Υu
t (x0) : u ∈ L1([0, t])}

Attainable set A(x0) = ∪t≥0At(x0)
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Accessibility

ẋ = A(x) + u(t)B(x), x ∈ M

Definition (Lie bracket)

[A,B](x) =
dA
dx

B − dB
dx

A

The Lie algebra Lie(A,B) spanned by A and B is the linear subspace of
Vec(M) spanned by all the brackets, of any length, of A and B ([A,B],
[A, [A,B]], [B, [A,B]], . . .).

Proposition (Krener’s theorem, Jurdjevic-Sussmann, 1973)

If Liex(A,B) = TxM, then A(x) is contained in the closure of its interior
(i.e., is not an hairy set).
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A criterion for controllability in U(n)

ẋ = Ax + u(t)Bx , M = U(n)

[A,B] = AB − BA

Proposition (Jurdjevic-Sussman, 1972)

(Σ) is controllable in U(n) if and only if Lie(A,B) = u(n).

Fundamental theoretical result.
Use with caution in practice (dimU(n) = n2 − 1, how many brackets
do you have to compute?)
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Choice of a basis

Up to a conjugation, one may assume that A is diagonal.

A =


iλ1 0 · · · 0

0 iλ2
. . .

...
...

. . . . . . 0
0 · · · 0 iλn

B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bn1 · · · bn,n−1 bnn


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Non resonant transitions

Definition

A transition (j , k), j 6= k, is non resonant if bj,k 6= 0 and, for every l1, l2,

|λl1 − λl2 | = |λj − λk | =⇒ {l1, l2} = {j , k} or bl1,l2 = 0.

Definition

A transition (j , k), j 6= k, is strongly non resonant if bj,k 6= 0 and, for
every l1, l2,

|λl1 − λl2 |
|λj − λk |

∈ Z =⇒ {l1, l2} = {j , k} or bl1,l2 = 0.
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Lyapounov techniques

Define the distance to the target V (ψ) = ‖ψ − ψref ‖2. Consider a
supplementary control ω

dψ
dt

= (A + iω)ψ + u(t)Bψ

At every time t, chose u(t) = <〈Bψ,ψref 〉 and ω(t) = λ+ <〈ψ,ψref 〉
[such that d

dtV (ψ(t)) < 0].

Proposition (Mirrahimi-Rouchon-Turinici, 2005)

For allmost every A and B, if ψref is an eigenstate of A, then for almost
every λ in R, the trajectory converges to the target
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Periodic control laws (strongly non resonant case)

Proposition

Let (j , k) be a strongly non resonant transition and u∗ be a
2π

|λj−λk |
-periodic function. If

∫ 2π
|λj−λk |

0 u∗(τ)ei|λj−λk |τdτ 6= 0, then there
exists T ∗ such that ∣∣∣〈φk ,X

u∗/n
nT∗ φj〉

∣∣∣ n→∞−→ 1.

T ∗ =
πT

2|bj,k |
∣∣∣∫ T

0 u∗(τ)ei(λj−λk )τdτ
∣∣∣ .
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Some estimates

L1 norm needed to achieve the transition from level j to k

π

2|bjk |
1

Eff jk(u∗)

with

0 ≤ Eff jk(u∗) =

∣∣∣∣∫ 2π
|λj−λk |

0 u∗(τ)ei(λj−λk )τdτ
∣∣∣∣∫ 2π

|λj−λk |

0 |u∗(τ)|dτ
≤ 1.

Error estimates

1− |〈φk ,X
u∗/n
nT∗ φj〉| ≤

C (u∗,B)

n inf l1,l2,l3
∣∣∣ |λl1−λl2 |
|λj−λk |

− l3
∣∣∣

Error× Time ≤ Const
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Periodic control laws (general non resonant case)

Proposition

Let (j , k) be a non resonant transition and u∗ be a 2π
|λj−λk |

-periodic
function. If Eff jk(u∗) 6= 0 and Eff l1l2(u∗) = 0 for every l1, l2 such that
|λl1−λl2 |
|λj−λk |

∈ Z and {l1, l2} 6= {j , k}, then there exists T ∗ such that∣∣∣〈φk ,X
u∗/n
nT∗ φj〉

∣∣∣ n→∞−→ 1.

L1 norm estimates:
‖u‖L1 ≤

π

2Eff jk(u∗)|bjk |

One may chose u∗ such that

Eff jk =
∞∏

l =2

cos
( π
2k

)
≈ 0.43
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Numerical simulations (strongly non resonant case

A = −i diag(12, 22, 32, . . . ,N2)

B = −i



0 1/2 0 · · · · · · 0

1/2 0 1/2 0
...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . 1/2
0 · · · · · · 0 1/2 0


We chose N = 22.
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Numerical simulations: strongly non resonant case
u∗(t) = cos3(t), Eff1,2(u∗) = 9π/32 ≈ 0.88, n = 30
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Periodic control laws: numerical simulations
u∗(t) = cos2(t), Eff1,2(u∗) = 0, n = 30
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Numerical simulations (general non resonant case)

A = −i diag(02, 12, 22, 32, . . . ,N2)

B = −i



0
√
2/2 0 · · · · · · 0

√
2/2 0 1/2 0

...

0 1/2
. . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . 1/2 0 1/2
0 · · · · · · 0 1/2 0


We chose N = 22.
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Numerical simulations: general non resonant case
u∗(t) = 3 cos(t)/2 + 2, Eff1,2(u∗) = 3/8, Eff2,3(u∗) = 0, n = 20
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Some examples

A quantum system evolving in Ω, a finite dimensional Riemannian
manifold, is described by its wave function ψ in the unit sphere of
L2(Ω,C). The system is in the subset ω with probability

∫
ω
|ψ|2dµ. The

time evolution is given by the Schrödinger equation

i
∂ψ

∂t
(x , t) = (−∆ + V (x))ψ(x , t)

When submitted to an external field (e.g., a laser) with time variable
intensity, ψ satisfies

i
∂ψ

∂t
= (−∆ + V (x))ψ(x , t) + u(t)W (x)ψ(x , t)
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Some examples

Rotation of a planar molecule
Ω = SO(2) ' R/2πZ

i
∂ψ

∂t
(θ, t) = −∂θθψ(θ, t) + u(t) cos θψ(θ, t)

Rotation of a molecule in space
Ω = S2

i
∂ψ

∂t
(θ, ν, t) = −∆ψ(θ, ν, t) + u(t) cos θψ(θ, ν, t)
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Some examples

Harmonic oscillator
Ω = R

i
∂ψ

∂t
(x , t) = (−∂xx + x2)ψ(x , t) + u(t)xψ(x , t)

Infinite square potential well
Ω = (0, π)

i
∂ψ

∂t
(x , t) = ∂x,xψ(x , t) + u(t)xψ(x , t)
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Abstract form

In the Hilbert space H(= L2(Ω,C), we consider an unbounded
skew-adjoint linear operator A(= −i(∆ + V )), a skew symmetric operator
B(= −iW (x)) and the evolution equation

dψ
dt

= (A + u(t)B)ψ
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Well-posedness

{ dψ
dt = (A + u(t)B)ψ
ψ(0) = ψ0

Well-posedness is very far from obvious. Cauchy-Lipschitz Theorem does
not apply when A is unbounded (i.e., not continuous), what is the case
here.
In the presented examples, for every locally integrable u : R→ R, we can
define the solution t 7→ Υu

t (ψ0). If ψ0 belongs to D(A), then Υu(ψ0) is
absolutely continuous and

d
dt

Υu
t (ψ0) = (A + u(t)B)Υu

t (ψ0) for a.e.t
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Discrete spectrum

In the presented examples, A has discrete spectrum. There exists a
non-decreasing sequence (λn)n∈N in [0,+∞) and an Hilbert basis
(ψn)n∈N of H such that Aψn = −iλnφn for every n.
Infinite dimensional matrices representation

A =


−iλ1 0 · · · · · ·

0 −iλ2
. . .

...
. . . −iλ3

. . .
...

. . . . . .


bj,k = 〈φj ,Bφk〉, bjk = −bkj
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Ball Marsden Slemrod

Theorem (Ball Marsden Slemrod, 1981 and Turinici, 2000)

If B is bounded, then the attainable set has empty interior in the
intersection of D(A) with the unit sphere of H.

Briefly: exact controllability is hopeless. It does not prevent approximate
controllability (or exact controllability on a smaller set).
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Regularity issues

Proposition

If D(Ak) is invariant for the unitary transformations e(A+uB), u ∈ R, then
D(Ak) is stable for the dynamics of the system (also for non constant
controls u).

This is a case, for every k , for all the examples encountered in the
litterature but the infinite square potential well.
The eigenstates belong the D(Ak) for every k .
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Connectedness issues

If the matrix of B in the basis (φn)n∈N is not connected, no global
controllability (in any sense) is to be expected.
Example: rotation of a planar molecule;

i
∂ψ

∂t
ψ(θ, t) = −∂θθψ(θ, t) + u(t) cos θψ(θ, t)

cos θ does not couple odd eigenfunctions with even ones.

A = −i diag(0, 12, 12, 22, 22, 32, 32, . . .)

Each eigenvalue but 0 is double and associated with two orthogonal
eigenfunctions φe

j and φo
j .

〈φe
j ,Bφ

o
k〉 = 0 for every {j , k}
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Quantum harmonic oscillator

Theorem (Mirrahimi-Rouchon,2004)

The quantum harmonic oscillator is not controllable, in any reasonable
sense.

A = −i diag(1/2, 3/2, 5/2, . . .)

B = −i


0
√
1 0 . . .

√
1 0

√
2

. . .
0
√
2 0

√
3

...
. . .

√
3

. . .


All the Galerkin approximations are exactly controllable.
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Square potential well

Ω = (0, 1)
∂ψ

∂t
(x , t) = i∆ψ(x , t)︸ ︷︷ ︸

Aψ

+u(t)W (x)ψ(x , t)︸ ︷︷ ︸
Bψ

Theorem (Beauchard-Laurent, 2009)

If there exists C > 0 such that for every j ∈ N,

|b1,j | >
C
j3

then the system is exactly controllable in the intersection of the unit
sphere with H3

(0).
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Square potential well

The proof relies on moment theory (to prove surjectivity of the
differential of the input-output mapping) and a fixed point theorem (in
an infinite dimensional Banach space).

Very precise result.
By far, the best available result on the structure of the attainable set
of a bilinear quantum control system.

Not constructive.
Irregular controls (L2 controls).
Extension to examples in dimension greater than one is an open
question (very hard).

Weyl’s estimate for the kth eigenvalue of the Laplacian on a
d -dimensional compact manifold:

λk ∼ Ck
d
2

Thomas Chambrion Infinite dimensional quantum systems



Finite dimensional bilinear quantum systems
Infinite dimensional quantum systems

Finite dimensional viewpoint

Bilinear Schrödinger equation
Obstructions to controllability
Controllability results

Lyapunov techniques

i
∂ψ

∂t
(x , t) = −∆ψ(x , t) + V (x)ψ(x , t)︸ ︷︷ ︸

Aψ

+u(t)W (x)ψ(x , t)︸ ︷︷ ︸
Bψ

Ω is a bounded domain of Rd, with smooth boundary.

Theorem (Nersesyan, 2009)

If
b1,j 6= 0 for every j ≥ 1 and
|λ1 − λj | 6= |λk − λl | for every j > 1, {1, j} 6= {k, l}

then the control system is approximately controllable on the unit sphere
for Hs norms.
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Geometric techniques

Hypotheses:
A is skew adjoint with discrete spectrum (−iλn)n∈N

for every u in R+, A + uB is essentially skew adjoint
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Geometric techniques

Definition

A subset S of N2 connects the levels j and k if there exists a finite
sequence j = l0, l1, . . . , lp = k such that (lm, lm+1) belongs to S for
m < p and 〈φlm ,Bφlm+1〉 6= 0.

Definition
A connected chain is a set that links every pair of integers. A connected
chain S is said to be non resonant if for every (l1, l2) in S, j , j ′ in N2,
|λl1 − λl2 | = |λj − λj′ | implies {l1, l2} = {j , j ′} or 〈φj ,Bφj′〉 = 0.
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Geometric techniques

Theorem (Boscain-Chambrion-Caponigro-Sigalotti, 2011)

If (A,B) admits a non resonant chain of connectedness S, then, for every
δ > 0, (A,B) is approximately simultaneously controllable by means of
piecewise constant functions taking value in (0, δ).

If (j , k) belongs to S , then the L1 norm needed to join (approximately) j
and k is less than

π

2ν|〈φj ,Bφk〉|
, with ν =

∏
l≥2

cos
( π
2l

)
≈ 0.43.
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Geometric techniques

Some nice points:
Very general result;
No hypotheses on the regularity on A or B (applies to very wild
situations);
“Constructive” proof;
Provides very precise estimates on the L1-norm of the control.

Some major drawbacks
Very weak result: it does not say anything about the structure of the
attainable set.
No estimate for the time.
No estimate for the error.
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Numerical simulations

Rotation of a planar molecule (odd subspace).
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Weakly coupled quantum systems

Assumptions:
A is skew-adjoint with discrete spectrum (−iλn)n∈N, (λn)n∈N is non
decreasing and tends to infinity.
B is bounded, skew-adjoint.
for every u in R, D(A + uB) = D(A) and D((A + uB)2) = D(A2).

Definition (Weakly coupled system)

(A,B) is weakly-coupled if there exists CA,B such that, for every ψ in
D(A),

|=〈Aψ,Bψ〉| ≤ CA,B |〈Aψ,ψ〉|
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Growth of |A|1/2 norms

|〈Aψ,ψ〉| =
∑

n∈N λn|〈φn, ψ〉| is the expected value of the energy at ψ.∣∣∣∣ ddt 〈|A|ψ,ψ〉
∣∣∣∣ = 2<〈|A|ψ, (A + u(t)B)ψ〉

≤ 2|u(t)|CA,B |〈Aψ,ψ〉|

By Gronwall’s lemma:

|〈Aψ(t), ψ(t)〉| ≤ e2CA,B
R t
0 |u(τ)|dτ |〈Aψ(0), ψ(0)〉|
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Size of velocity tail

Define πN : H → H, the orthogonal projection on the first N eigenstates
of A.

‖B(Id− πN)ψ(t)‖2 ≤ ‖B‖2
∑
n≥N

|〈φn, (Id− πN)ψ(t), 〉|2

≤ 1
λN
‖B‖2

∑
n≥N

λn|〈φn, (Id− πN)ψ(t), 〉|2

≤ 1
λN
‖B2‖2|〈A(Id− πN)ψ(t), (Id− πN)ψ(t)〉|

≤ ‖B2‖2e2CA,B‖u‖L1 |〈Aψ(0), ψ(0)〉|
λN

→ 0
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Good Galerkin approximation

πNψ
′(t) = A(N)πNψ(t) + u(t)πNBπNψ(t) + u(t)πNB(1− πN)ψ(t)

Denoting with X (N)
u (t) the propagator of the N-dimensional system

x ′ = (A(N) + u(t)B(N))x ,

πNψ(t) = X (N)
u (t)πNψ(0) +

∫ t

0
X (N)

u (t, s)u(τ)πNB(1− πN)ψ(τ)dτ

Proposition (Boussaid-Caponigro-Chambrion, 2011)

Let (A,B) be weakly-coupled. For every ε > 0, for every K > 0, for every
ψ0, there exists N = N(ε,K , ψ0) such that

‖u‖L1 ≤ K =⇒ ‖πNΥu
t (ψ0)− X (N)

u (t)πNψ0‖ < ε.
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Good Galerkin approximation

Many estimates are known for the Ak norms of the solutions of the
Schrödinger equation (see Bourgain, 1999). The point is that this
estimate is uniform with respect to the control.
The result also applies to more general cases (B unbounded, A with
non-discrete spectrum) but requires regularity.
Possible extensions to A with continuous spectrum (WIP).
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Good Galerkin approximation

We restrict to the odd subspace.

A = −i diag(12, 22, 32, . . . ,N2)

B = −i



0 1/2 0 · · · 0

1/2 0 1/2 0
. . .

...

0
. . . . . .

...
...

. . . . . .
0 . . . . . . 0 1/2 0


For ψ0 = φ1, ε = 10−3 and K = 14/3, one finds N = 22.
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Controllability

What we did provides a constructive proof of the controllability of
the 2D planar molecule.
When the cost is the L1 norm, a minimizing sequence of controls is
given by periodic Dirac functions. [The corresponding efficiencies
tend to 1.]
Unknown form of a time minimizing sequence of controls.
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Quantum harmonic oscillator: Good Galerkin approximation

A = −i diag(1/2, 3/2, 5/2, . . .)

B = −i


0
√
1 0 . . .

√
1 0

√
2

. . .
0
√
2 0

√
3

...
. . .

√
3

. . .


B is not bounded. However, B is bounded relatively to A and the system
still admits a sequence of Good Galerkin approximations. ε = 10−3,
K = 3, N ≈ 400
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Controllability of the infinite dimensional system?

Scheme of the proof:
1 Find a sequence of Galerkin approximations that are controllable.
2 Prove that these Galerkin approximations are controllable with a

uniformly bounded L1-norm.
3 Use the Good Galerkin Approximation property.

The second step is impossible for the harmonic oscillator.
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Concluding remarks

Very few results about the structure of the attainable set.
Some sufficient criterion for approximate controllability.
Some reasonable estimates (L1 norm, time, precision).
Constructive methods (control and simulations are possible).
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Future works

Continuous spectrum.
Time minimization: does there exist a minimal transfert time?
Taking decoherence into account.
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